Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Lasers Surg Med ; 55(3): 278-293, 2023 03.
Article in English | MEDLINE | ID: covidwho-2283191

ABSTRACT

BACKGROUND: Photobiomodulation (PBM) therapy, a form of low-dose light therapy, has been noted to be effective in several age-associated chronic diseases such as hypertension and atherosclerosis. Here, we examined the effects of PBM therapy on age-associated cardiovascular changes in a mouse model of accelerated cardiac aging. METHODS: Fourteen months old Adenylyl cyclase type VIII (AC8) overexpressing transgenic mice (n = 8) and their wild-type (WT) littermates (n = 8) were treated with daily exposure to Near-Infrared Light (850 nm) at 25 mW/cm2 for 2 min each weekday for a total dose of 1 Einstein (4.5 p.J/cm2 or fluence 3 J/cm2 ) and compared to untreated controls over an 8-month period. PBM therapy was administered for 3.5 months (Early Treatment period), paused, due to Covid-19 restrictions for the following 3 months, and restarted again for 1.5 months. Serial echocardiography and gait analyses were performed at monthly intervals, and serum TGF-ß1 levels were assessed following sacrifice. RESULTS: During the Early Treatment period PBM treatments: reduced the age-associated increases in left ventricular (LV) mass in both genotypes (p = 0.0003), reduced the LV end-diastolic volume (EDV) in AC8 (p = 0.04); and reduced the left atrial dimension in both genotypes (p = 0.02). PBM treatments substantially increased the LV ejection fraction (p = 0.03), reduced the aortic wall stiffness (p = 0.001), and improved gait symmetry, an index of neuro-muscular coordination (p = 0.005). The effects of PBM treatments, measured following the pause, persisted. Total TGF-ß1 levels were significantly increased in circulation (serum) in AC8 following PBM treatments (p = 0.01). We observed a striking increase in cumulative survival in PBM-treated AC8 mice (100%; p = 0.01) compared to untreated AC8 mice (43%). CONCLUSION: PBM treatment mitigated age-associated cardiovascular remodeling and reduced cardiac function, improved neuromuscular coordination, and increased longevity in an experimental animal model. These responses correlate with increased TGF-ß1 in circulation. Future mechanistic and dose optimization studies are necessary to assess these anti-aging effects of PBM, and validation in future controlled human studies is required for effective clinical translation.


Subject(s)
COVID-19 , Low-Level Light Therapy , Humans , Mice , Animals , Infant , Transforming Growth Factor beta1 , Low-Level Light Therapy/methods , Aging , Heart
2.
Medicine (Baltimore) ; 101(46): e31218, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2135734

ABSTRACT

INTRODUCTION: Orofacial pain and tensional cephalea were symptoms commonly reported in COVID-19 patients, even after recovery, and were considered chronic pain in these cases. The aim of this research is to evaluate the effect of the application of photobiomodulation with red and infrared lasers applied locally and systemically. METHODS AND ANALYSIS: For this purpose, individuals who have been diagnosed with COVID-19 and have had a tension headache and/or orofacial pain for more than 3 months will be selected by convenience. The participants will be divided into two different groups: G1-photobiomodulation with red and infrared laser with local application on the pain points (808 nm and 660 nm, 100 mW, 6 J per point) and G2-photobiomodulation with red laser with transcutaneous application on the radial artery (660 nm, 100 mW, 30 minutes). All participants will be treated for a period of 4 weeks, with 8 application sessions. The effects will be measured by means of blood lactate level, Brief Pain Inventory, Visual Analog Scale (VAS), and Cephalea Impact Test. The data will be collected weekly before and after the treatment, and the following tests will be applied: Analysis of variance (ANOVA), Tukey paired t test, Kruskal-Wallis, or Wilcoxon, according to data distribution. α = 0.05 will be considered as the level of statistical significance. ETHICS AND DISSEMINATION: This study was approved by the Research Projects Committee of the Nove de Julho University (approval number 4.673.963). Results will be disseminated through peer-reviewed journals and events for the scientific and clinical community, and the general public. It is registered in the ClinicalTrials.gov database with the number NCT05430776.


Subject(s)
COVID-19 , Low-Level Light Therapy , Humans , Facial Pain/etiology , Low-Level Light Therapy/methods , Lasers , Immunotherapy
3.
J Alzheimers Dis ; 90(2): 811-822, 2022.
Article in English | MEDLINE | ID: covidwho-2109698

ABSTRACT

BACKGROUND: Recent innovative non-pharmacological interventions and neurostimulation devices have shown potential for application in the treatment of Alzheimer's disease (AD). These include photobiomodulation (PBM) therapy. OBJECTIVE: This pilot study assesses the safety, compliance with, and efficacy of a brain-gut PBM therapy for mild-to-moderate AD patients. METHODS: This double-blind, randomized, monocentric sham-controlled study started in 2018 and ended prematurely in 2020 due to the COVID-19 pandemic. Fifty-three mild-to-moderate AD patients were randomized, 27 in the PBM group and 26 in the sham group. All patients had 40 treatment sessions lasting 25 min each over 8 weeks and were followed for 4 weeks afterwards. Compliance with the treatment was recorded. Safety was assessed by recording adverse events (AEs), and efficacy was evaluated using neuropsychological tests. RESULTS: The PBM therapy proved to be safe in regard to the number of recorded AEs (44% of the patients), which were balanced between the PBM and sham groups. AEs were mainly mild, and no serious AEs were reported. The majority of the patients (92.5%) were highly compliant, which confirms the feasibility of the PBM treatment. Compared to the sham patients, the PBM patients showed lower ADAS-Cog comprehension subscores, higher forward verbal spans, and lower TMT-B execution times, which suggests an improvement in cognitive functions. CONCLUSION: This study demonstrates the tolerability of and patient compliance with a PBM-based treatment for mild-to-moderate AD patients. It highlights encouraging efficacy trends and provides insights for the design of the next phase trial in a larger AD patient sample.


Subject(s)
Alzheimer Disease , COVID-19 , Low-Level Light Therapy , Humans , Pilot Projects , Pandemics , Treatment Outcome , Alzheimer Disease/radiotherapy , Alzheimer Disease/drug therapy , Brain , Double-Blind Method , Patient Compliance
4.
BMJ Open ; 12(6): e060058, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1923250

ABSTRACT

INTRODUCTION: Chronic pain conditions are a leading cause of disease and disability. They are associated with symptoms such as fatigue, sleep and mood disturbances. Minimal evidence is available to support effective treatments and alternatives treatment approaches are called for. Photobiomodulation therapy has been highlighted as one promising option. A whole-body therapy device (NovoTHOR) has recently been developed with a number of potential advantages for people with chronic pain. Research is needed to consider the feasibility of this device. METHODS AND ANALYSIS: A single-centre single-armed (no placebo group) feasibility study with an embedded qualitative component will be conducted. The intervention will comprise 18 treatments over 6 weeks, with 6-month follow-up, in the whole-body photobiomodulation device. A non-probability sample of 20 adult participants with a clinician diagnosis of chronic axial pain, polyarthralgia, myofascial pain or widespread pain will be recruited (self-referral and clinician referral). Outcome measures will focus on acceptability of trial processes with a view to guiding a definitive randomised controlled trial. Analyses will use descriptive statistics for quantitative aspects. The qualitative element will be assessed by means of a participant-reported experience questionnaire postintervention and semistructured audio-recorded interviews at three stages; preintervention, midintervention and postintervention. The latter will be transcribed verbatim and a reflexive thematic analysis will be used to identify emerging themes. Exploratory outcomes (participant-reported and performance-based measures) will be analysed according to data distribution. ETHICS AND DISSEMINATION: The study has received ethical approval from the Leicester Central Research and Ethics Committee. Findings will be disseminated via local chronic pain groups, public register update, submission for presentation at scientific meetings and open-access peer-reviewed journals, and via academic social networks. TRIAL REGISTRATION NUMBER: NCT05069363.


Subject(s)
Chronic Pain , Low-Level Light Therapy , Adult , Chronic Disease , Chronic Pain/radiotherapy , Feasibility Studies , Humans , Pain Measurement , Randomized Controlled Trials as Topic
5.
Int J Mol Sci ; 23(9)2022 May 07.
Article in English | MEDLINE | ID: covidwho-1847344

ABSTRACT

Researchers from across the world are seeking to develop effective treatments for the ongoing coronavirus disease 2019 (COVID-19) outbreak, which arose as a major public health issue in 2019, and was declared a pandemic in early 2020. The pro-inflammatory cytokine storm, acute respiratory distress syndrome (ARDS), multiple-organ failure, neurological problems, and thrombosis have all been linked to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) fatalities. The purpose of this review is to explore the rationale for using photobiomodulation therapy (PBMT) of the particular wavelength 1068 nm as a therapy for COVID-19, investigating the cellular and molecular mechanisms involved. Our findings illustrate the efficacy of PBMT 1068 nm for cytoprotection, nitric oxide (NO) release, inflammation changes, improved blood flow, and the regulation of heat shock proteins (Hsp70). We propose, therefore, that PBMT 1068 is a potentially effective and innovative approach for avoiding severe and critical illness in COVID-19 patients, although further clinical evidence is required.


Subject(s)
COVID-19 , Low-Level Light Therapy , Humans , Nitric Oxide , Pandemics , SARS-CoV-2
6.
J Biophotonics ; 15(8): e202200058, 2022 08.
Article in English | MEDLINE | ID: covidwho-1802312

ABSTRACT

It is postulated that the inflammatory process resulting from SARS-CoV-2 infection is the main cause of smell and taste dysfunctions in patients. In view of this, photobiomodulation, due to its anti-inflammatory and antioxidant effects, may be a promising therapeutic modality to treat these disorders. In the present case report, we observed clinical improvement in the symptoms of anosmia and ageusia related to COVID-19 after treatment with photobiomodulation. Due to the inflammatory nature of COVID-19 and the anti-inflammatory effects, photobiomodulation antioxidants already proven in the literature make it a promising therapeutic modality, especially sequela COVID-related, including olfactory (anosmia) and taste (ageusia) dysfunction. In the present case report, the patient's olfactory and gustatory functions were re-established after 10 treatment sessions with photobiomodulation.


Subject(s)
Ageusia , COVID-19 , Low-Level Light Therapy , Olfaction Disorders , Ageusia/etiology , Anosmia , COVID-19/complications , COVID-19/radiotherapy , Humans , Olfaction Disorders/complications , SARS-CoV-2 , Smell , Taste Disorders/complications
7.
Photobiomodul Photomed Laser Surg ; 40(2): 112-122, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1722179

ABSTRACT

Objective: To assess whether remote application of photobiomodulation (PBM) is effective in reducing clinical signs of Parkinson's disease (PD). Background: PD is a progressive neurodegenerative disease for which there is no cure and few treatment options. There is a strong link between the microbiome-gut-brain axis and PD. PBM in animal models can reduce the signs of PD and protect the neurons from damage when applied directly to the head or to remote parts of the body. In a clinical study, PBM has been shown to improve clinical signs of PD for up to 1 year. Methods: Seven participants were treated with PBM to the abdomen and neck three times per week for 12 weeks. Participants were assessed for mobility, balance, cognition, fine motor skill, and sense of smell on enrolment, after 12 weeks of treatment in a clinic and after 33 weeks of home treatment. Results: A number of clinical signs of PD were shown to be improved by remote PBM treatment, including mobility, cognition, dynamic balance, spiral test, and sense of smell. Improvements were individual to the participant. Some improvements were lost for certain participants during at-home treatment, which coincided with a number of enforced coronavirus disease 2019 (COVID-19) pandemic lockdown periods. Conclusions: Remote application of PBM was shown to be an effective treatment for a number of clinical signs of PD, with some being maintained for 45 weeks, despite lockdown restrictions. Improvements in clinical signs were similar to those seen with the application of remote plus transcranial PBM treatment in a previous study. Clinical Trial Registration number: U1111-1205-2035.


Subject(s)
COVID-19 , Low-Level Light Therapy , Neurodegenerative Diseases , Parkinson Disease , Animals , Communicable Disease Control , Humans , Parkinson Disease/radiotherapy , SARS-CoV-2
8.
Medicine (Baltimore) ; 101(6): e28758, 2022 Feb 11.
Article in English | MEDLINE | ID: covidwho-1708012

ABSTRACT

RATIONALE: Sleep disturbance is commonly noted after Guillain-Barré syndrome (GBS) and is often caused by persistent discomfort after disease survival. Intravascular laser irradiation of blood (ILIB) has been shown to be effective in pain modulation owing to the influence of nociceptive signals in the peripheral nervous system. We investigated the application of ILIB on post-Oxford -AstraZeneca vaccination GBS and evaluated its effect on sleep quality. PATIENT CONCERNS: A 48-year-old woman was subsequently diagnosed with GBS after Oxford-AstraZeneca vaccination. The patient was discharged after a 5-day course of intravenous immunoglobulin administration. However, 1 week after discharge, the previously relieved symptoms flared with accompanying sleep disturbance. DIAGNOSIS AND INTERVENTIONS: The patient was diagnosed with post-vaccination GBS, and persistent pain and sleep disturbances persisted after disease survival. ILIB was performed. OUTCOMES: We used the Pittsburgh Sleep Quality Index before and after intravascular laser irradiation. There was a marked improvement in the sleep duration, efficiency, and overall sleep quality. The initial score was 12 out of 21 and the final score was 7 out of 21. LESSONS: We found that ILIB was effective in pain modulation in post-vaccination GBS and significantly improved sleep quality.


Subject(s)
ChAdOx1 nCoV-19/adverse effects , Guillain-Barre Syndrome/chemically induced , Low-Level Light Therapy , Sleep Wake Disorders/therapy , COVID-19 Vaccines , ChAdOx1 nCoV-19/administration & dosage , Female , Guillain-Barre Syndrome/complications , Guillain-Barre Syndrome/drug therapy , Humans , Immunoglobulins, Intravenous/administration & dosage , Immunoglobulins, Intravenous/therapeutic use , Middle Aged , Pain , Sleep , Sleep Wake Disorders/etiology , Vaccination/adverse effects
9.
Photodiagnosis Photodyn Ther ; 38: 102743, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1661892

ABSTRACT

Several oral lesions related to COVID-19 have been described in the scientific literature. The COVID-19 pandemic highlighs importance of supportive protocols, which can reduce the inflammation and aid in tissue repair in severe cases. Photobiomodulation therapy (PBMT) alone or in combination with antimicrobial photodynamic therapy (aPDT) can be used to manage orofacial lesions in confirmed cases of COVID-19. Here, we sought to describe the clinical presentation and specificities of three cases in which aPDT and PBMT were used to manage orofacial lesions in patients with COVID-19. The laser protocols were effective with improvement of the orofacial lesions within a few days.


Subject(s)
Anti-Infective Agents , COVID-19 , Low-Level Light Therapy , Photochemotherapy , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/therapeutic use , Humans , Low-Level Light Therapy/methods , Multicenter Studies as Topic , Pandemics , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , SARS-CoV-2
10.
Adv Exp Med Biol ; 1376: 29-44, 2022.
Article in English | MEDLINE | ID: covidwho-1575387

ABSTRACT

Preliminary studies also show that many of the fatalities of COVID-19 are due to over-activity of the immune system, and photobiomodulation (PBM) therapy mainly accelerates wound healing and reduces pain and inflammation. Therefore, this systematic review and meta-analysis was conducted to evaluate the probable effect of the PBM therapy on the lung inflammation or ARDS and accelerate the regeneration of the damaged tissue. We systematically searched major indexing databases, including PubMed/Medline, ISI web of science (WOS), Scopus, Embase, and Cochrane central, using standard terms without any language, study region, or type restrictions. Of the 438 studies found through initial searches, 13 met the inclusion criteria. After applying the exclusion criteria, the main properties of 13 articles on 384 animals included in this meta-analysis with a wide range of species include rat (n = 10) and rabbit (n = 3). The analysis revealed that PBM therapy reduced TNFα (SMD:-3.75, 95% CI: -4.49, -3.02, P < 0.00001, I2 = 10%), IL-1ß (SMD:-4.65, 95% CI: -6.15, -3.16, P < 0.00001, I2 = 62%), and IL-6 (SMD:-4.20, 95% CI: -6.42, -1.97, P = 0.0002, I2 = 88%) significantly compared with the model controls. Hence, PBM therapy increased IL-10 significantly compared with the model controls (SMD:-4.65, 95% CI: -6.15, -3.16, P < 0.00001, I2 = 62%). PBM therapy also reduced MPO activity (SMD:-2.13, 95% CI: -3.38, -0.87, P = 0.0009, I2 = 64%) and vascular permeability (SMD:-2.59, 95% CI: -4.40, -0.77, P = 0.0052, I2 = 71%) in the lung using the Evans blue extravasation technique significantly compared with the model controls. This systematic review and meta-analysis revealed that the PBM therapy does utilize beneficial anti-inflammatory effect, modulation of the immune system, lung permeability, or bronchoalveolar lavage on lung damage in both animal models and clinical studies. However, animal model and clinical studies appear limited considering the quality of the included evidences; therefore, large clinical trials are still required.


Subject(s)
COVID-19 , Low-Level Light Therapy , Pneumonia , Animals , Inflammation , Lung , Rabbits , Rats
11.
Photodiagnosis Photodyn Ther ; 37: 102643, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1531705

ABSTRACT

BACKGROUND AND AIM: Among the most common symptoms of COVID-19 is taste dysfunction, which has a ranging clinical presentation. As well as its pathophysiology remains to be unclear, there is not enough information about the efficacy and safety of the available treatments. This study aims to report a series of cases using PBMT for the management of COVID-19-related taste impairment. CASE SERIES: 8 female and 2 male patients sought medical help for taste impairment (either partially or completely) after COVID-19 infection. Photobiomodulation therapy (PBMT) on the tongue mucosa was then proposed but with 3 different protocols. Taste perception at baseline and before every laser session was evaluated using a visual analog scale. Irrespective of the PBMT protocol, taste recovery was noted in all cases but with varying degrees of improvement. CONCLUSION: given the high prevalence rates of taste dysfunction in COVID-19 patients and the lack of information about the available treatments, PBMT seems to be a promising therapeutic modality but not dependent on the total number of laser sessions and the interval between them. The choice of the most suitable laser protocol as well as the knowledge of the exact photonic mechanisms, however, need to be better studied.


Subject(s)
COVID-19 , Low-Level Light Therapy , Photochemotherapy , Female , Humans , Low-Level Light Therapy/methods , Male , Photochemotherapy/methods , SARS-CoV-2 , Taste Disorders/etiology
12.
Lasers Med Sci ; 37(3): 1921-1929, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1482226

ABSTRACT

We are currently facing a pandemic that continuously causes high death rates and has negative economic and psychosocial impacts. Therefore, this period requires a quick search for viable procedures that can allow us to use safe and non-invasive clinical tools as prophylactic or even adjuvant methods in the treatment of COVID-19. Some evidence shows that photobiomodulation therapy (PBMT) can attenuate the inflammatory response and reduce respiratory disorders similar to acute lung injury (ALI), complications associated with infections, such as the one caused by the new Coronavirus (SARS-CoV-2). Hence, the aim of the present study was to evaluate the influence of PBMT (infrared low-level laser therapy) on the treatment of ALI, one of the main critical complications of COVID-19 infection, in an experimental model in rats. Twenty-four male Wistar rats were randomly allocated to three experimental groups (n = 8): control group (CG), controlled ALI (ALI), and acute lung injury and PBM (ALIP). For treatment, a laser equipment was used (808 nm; 30 mw; 1.68 J) applied at three sites (anterior region of the trachea and in the ventral regions of the thorax, bilaterally) in the period of 1 and 24 h after induction of ALI. For treatment evaluation, descriptive histopathological analysis, lung injury score, analysis of the number of inflammatory cells, and expression of interleukin 1 ß (IL-1ß) were performed. In the results, it was possible to observe that the treatment with PBMT reduced inflammatory infiltrates, thickening of the alveolar septum, and lung injury score when compared to the ALI group. In addition, PBMT showed lower immunoexpression of IL-1ß. Therefore, based on the results observed in the present study, it can be concluded that treatment with PBMT (infrared low-level laser therapy) was able to induce an adequate tissue response capable of modulating the signs of inflammatory process in ALI, one of the main complications of COVID-19.


Subject(s)
COVID-19 , Low-Level Light Therapy , Animals , COVID-19/radiotherapy , Low-Level Light Therapy/methods , Lung/pathology , Male , Rats , Rats, Wistar , SARS-CoV-2
13.
J Biophotonics ; 15(2): e202100194, 2022 02.
Article in English | MEDLINE | ID: covidwho-1469461

ABSTRACT

A nonrandomized 50-person case study of COVID-19-positive patients was conducted employing (for the first time) a regimen of whole-organ deep-tissue transdermal dynamic photobiomodulation (PBM) as a primary (or exclusive) therapeutic modality in the treatment of coronavirus. Therapy sessions comprised algorithmically alternating red (650 nm) and near-infrared (NIR; 850 nm) LEDs with an average irradiance of 11 mW/cm2 dynamically sequenced at multiple pulse frequencies. Delivered via 3D bendable polymeric pads maintaining orthogonal optical incidence to body contours over 1,000 cm2 , a single 84-minute session concurrently delivered 20 kJ to the sinuses and 15 kJ to each lung at skin temperatures below 42°C. Therapeutic outcomes observed include significant reductions in the duration and severity of disease symptoms. Acute conditions including fever, body aches (BA) and respiratory distress comprising paroxysmal coughing; lung congestion, dyspnea and hypoxia; sinus congestion; acute eye inflammation; and extreme malaise were eliminated in 41/50 patients within 4 days of commencing PBM treatments with 50/50 patients fully recovering within 3 weeks with no supplemental oxygen requirements. SpO2 concentrations improved as much as 9 points (average 2.5 points) across the entire study population. The PBM sessions required to completely resolve COVID-19 conditions appears monotonically correlated to the time-to-treatment (TTTx)-the delay between the onset of a patient's symptoms and commencing PBM therapy. In contrast, acute inflammatory symptoms were resolved within 4 days irrespective of TTTx.


Subject(s)
COVID-19 , Low-Level Light Therapy , COVID-19/therapy , Humans , Lung , SARS-CoV-2
14.
Photodiagnosis Photodyn Ther ; 36: 102574, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1458817

ABSTRACT

Olfactory dysfunction is commonly seen in COVID-19 patients; however, little is known about the pathophysiology and management. The present study aimed to report a series of cases in which three protocols of intranasal photobiomodulation therapy (PBMT) were used for COVID-19-related olfactory dysfunction. Irrespective of the PBMT protocol, olfaction recovery was noted in all cases but with varying degrees of improvement. Although intranasal PBMT seems to be a promising therapeutic modality, more research is needed to better define effectiveness.


Subject(s)
COVID-19 , Low-Level Light Therapy , Olfaction Disorders , Photochemotherapy , Humans , Olfaction Disorders/drug therapy , Olfaction Disorders/therapy , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , SARS-CoV-2 , Smell
15.
Photobiomodul Photomed Laser Surg ; 39(9): 579-580, 2021 09.
Article in English | MEDLINE | ID: covidwho-1380993
16.
J Photochem Photobiol B ; 222: 112282, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1347724

ABSTRACT

Emerging evidence suggests that blue light has the potential to inactivate viruses. Therefore, we investigated the effect of 405 nm, 410 nm, 425 nm and 450 nm pulsed blue light (PBL) on human alpha coronavirus HCoV-229 E and human beta coronavirus HCoV-OC43, using Qubit fluorometry and RT-LAMP to quantitate the amount of nucleic acid in irradiated and control samples. Like SARS-CoV-2, HCoV-229E and HCoV-OC43 are single stranded RNA viruses transmitted by air and direct contact; they have similar genomic sizes as SARS-CoV-2, and are used as surrogates for SARS-CoV-2. Irradiation was carried out either at 32.4 J cm-2 using 3 mW cm-2 irradiance or at 130 J cm-2 using 12 mW cm-2 irradiance. Results: (1) At each wavelength tested, PBL was antiviral against both coronaviruses. (2) 405 nm light gave the best result, yielding 52.3% (2.37 log10) inactivation against HCoV-OC43 (p < .0001), and a significant 1.46 log 10 (44%) inactivation of HCoV-229E (p < .01). HCoV-OC43, which like SARS-CoV-2 is a beta coronavirus, was more susceptible to PBL irradiation than alpha coronavirus HCoV-229E. The latter finding suggests that PBL is potentially antiviral against multiple coronavirus strains, and that, while its potency may vary from one virus to another, it seems more antiviral against beta coronaviruses, such as HCoV-OC43. (3) Further, the antiviral effect of PBL was better at a higher irradiance than a lower irradiance, and this indicates that with further refinement, a protocol capable of yielding 100% inactivation of viruses is attainable.


Subject(s)
Coronavirus 229E, Human/radiation effects , Coronavirus OC43, Human/radiation effects , Low-Level Light Therapy/methods , SARS-CoV-2/radiation effects , Coronavirus 229E, Human/physiology , Coronavirus OC43, Human/physiology , Dose-Response Relationship, Radiation , Humans , SARS-CoV-2/physiology
17.
BMC Neurol ; 21(1): 256, 2021 Jul 02.
Article in English | MEDLINE | ID: covidwho-1295447

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disease with no cure and few treatment options. Its incidence is increasing due to aging populations, longer disease duration and potentially as a COVID-19 sequela. Photobiomodulation (PBM) has been successfully used in animal models to reduce the signs of PD and to protect dopaminergic neurons. OBJECTIVE: To assess the effectiveness of PBM to mitigate clinical signs of PD in a prospective proof-of-concept study, using a combination of transcranial and remote treatment, in order to inform on best practice for a larger randomized placebo-controlled trial (RCT). METHODS: Twelve participants with idiopathic PD were recruited. Six were randomly chosen to begin 12 weeks of transcranial, intranasal, neck and abdominal PBM. The remaining 6 were waitlisted for 14 weeks before commencing the same treatment. After the 12-week treatment period, all participants were supplied with PBM devices to continue home treatment. Participants were assessed for mobility, fine motor skills, balance and cognition before treatment began, after 4 weeks of treatment, after 12 weeks of treatment and the end of the home treatment period. A Wilcoxon Signed Ranks test was used to assess treatment effectiveness at a significance level of 5%. RESULTS: Measures of mobility, cognition, dynamic balance and fine motor skill were significantly improved (p < 0.05) with PBM treatment for 12 weeks and up to one year. Many individual improvements were above the minimal clinically important difference, the threshold judged to be meaningful for participants. Individual improvements varied but many continued for up to one year with sustained home treatment. There was a demonstrable Hawthorne Effect that was below the treatment effect. No side effects of the treatment were observed. CONCLUSIONS: PBM was shown to be a safe and potentially effective treatment for a range of clinical signs and symptoms of PD. Improvements were maintained for as long as treatment continued, for up to one year in a neurodegenerative disease where decline is typically expected. Home treatment of PD by the person themselves or with the help of a carer might be an effective therapy option. The results of this study indicate that a large RCT is warranted. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry, registration number: ACTRN12618000038291p , registered on 12/01/2018.


Subject(s)
Low-Level Light Therapy , Parkinson Disease/therapy , COVID-19 , Humans , Prospective Studies , SARS-CoV-2
18.
Photobiomodul Photomed Laser Surg ; 39(6): 386-389, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1233835

ABSTRACT

Objective: This article reports the case of a patient with oral manifestation of coronavirus disease 2019 (COVID-19) treated with photobiomodulation (PBM) and photodynamic therapy (PDT). Background: Some dermatological and oral mucosal lesions have recently been linked to severe acute respiratory syndrome coronavirus 2 infection. Methods: A 65-year-old female patient with a confirmed real-time reverse transcriptase-polymerase chain reaction diagnosis of COVID-19 presented with dry edematous lips, edema with mucosal desquamation, ulceration and blood crust on the inner aspect of the lips, gingival petechiae and erythematous and pseudomembranous lesions on the dorsum of the tongue. The treatment protocol was three sessions of antimicrobial PDT (aPDT) (660 nm diode laser + methylene blue) to the lips and tongue, every 24 h to control contamination, followed by PBM (low-power laser, 100 mW, 2 J/point) to the lips, tongue, and oral mucosa for additional four sessions every 24 h. Results: Therapy association promoted pain control and healing of oral mucosal lesions in 7 days of treatment. Conclusions: PBM and aPDT could be an interesting approach to manage COVID-19 patients.


Subject(s)
COVID-19/complications , COVID-19/therapy , Low-Level Light Therapy , Mouth Diseases/therapy , Mouth Diseases/virology , Photochemotherapy , Aged , Female , Humans , Lasers, Semiconductor/therapeutic use , Methylene Blue/therapeutic use , Photosensitizing Agents/therapeutic use
19.
Int J Mol Sci ; 22(9)2021 May 06.
Article in English | MEDLINE | ID: covidwho-1224026

ABSTRACT

In recent decades, researchers around the world have been studying intensively how micro-organisms that are present inside living organisms could affect the main processes of life, namely health and pathological conditions of mind or body. They discovered a relationship between the whole microbial colonization and the initiation and development of different medical disorders. Besides already known probiotics, novel products such as postbiotics and paraprobiotics have been developed in recent years to create new non-viable micro-organisms or bacterial-free extracts, which can provide benefits to the host with additional bioactivity to probiotics, but without the risk of side effects. The best alternatives in the use of probiotics and postbiotics to maintain the health of the intestinal microbiota and to prevent the attachment of pathogens to children and adults are highlighted and discussed as controversies and challenges. Updated knowledge of the molecular and cellular mechanisms involved in the balance between microbiota and immune system for the introspection on the gut-lung-brain axis could reveal the latest benefits and perspectives of applied photobiomics for health. Multiple interconditioning between photobiomodulation (PBM), probiotics, and the human microbiota, their effects on the human body, and their implications for the management of viral infectious diseases is essential. Coupled complex PBM and probiotic interventions can control the microbiome, improve the activity of the immune system, and save the lives of people with immune imbalances. There is an urgent need to seek and develop innovative treatments to successfully interact with the microbiota and the human immune system in the coronavirus crisis. In the near future, photobiomics and metabolomics should be applied innovatively in the SARS-CoV-2 crisis (to study and design new therapies for COVID-19 immediately), to discover how bacteria can help us through adequate energy biostimulation to combat this pandemic, so that we can find the key to the hidden code of communication between RNA viruses, bacteria, and our body.


Subject(s)
COVID-19/immunology , COVID-19/microbiology , Gastrointestinal Microbiome/immunology , Low-Level Light Therapy/methods , Probiotics/therapeutic use , SARS-CoV-2/immunology , Brain/immunology , Brain/radiation effects , COVID-19/radiotherapy , COVID-19/therapy , Cytokine Release Syndrome/microbiology , Cytokine Release Syndrome/radiotherapy , Gastrointestinal Microbiome/radiation effects , Humans , Lung/immunology , Lung/radiation effects , Metabolomics , Phototherapy/methods , SARS-CoV-2/radiation effects
20.
Photodiagnosis Photodyn Ther ; 34: 102281, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1195388

ABSTRACT

Oral lesions related to the novel Coronavirus Disease 2019 (COVID-19) have been increasingly described; however, clinical and epidemiological information is still scant. Although a diversity of therapeutic strategies for the management of these lesions are present in the literature, one can note a lack of standardization and doubtful effectiveness. Thus, the present study aimed to report a series of cases in which a combination of antimicrobial photodynamic therapy (aPDT) and photobiomodulation therapy (PBMT) was used for orofacial lesions in patients suffering from COVID-19. It was noted, in all cases, a marked improvement in tissue repair and pain relief within a few days; moreover, the patients recovered their orofacial functions satisfactorily. Based on the present series of cases and having in mind the conspicuous lack of information on the different aspects of COVID-19, the protocol which combined aPDT with PMBT seemed to be effective in the management of COVID-19-related orofacial lesions.


Subject(s)
Anti-Infective Agents , COVID-19 , Low-Level Light Therapy , Photochemotherapy , Anti-Infective Agents/therapeutic use , Humans , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL